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Outline

The SCALE Code System
Description and recent developments

The Liquid Salt-cooled VHTR Challenges
Basic Design of the System   –   Thank you Jim.
Primary Issues and Challenges

Results from Salt Coolant Studies
Results from 3-D Neutron Transport Analyses
Conclusions

Applicability of ORNL Tools to AFCI/Gen-IV Analyses
Recommended improvements for greater applicability
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SCALE @ ORNL: Science to Applications

Interface science
(the basic physics of

cross-section
measurements),

computational modeling
(SCALE),

and applications
expertise to support

evaluation and
resolution of nuclear

engineering and safety
issues.
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• Cross-section processing
• Criticality safety
• Radiation protection and shielding
• Reactor physics
• SNF/waste characterization (e.g.,
  inventory, decay heat, radiation
  source and spectra)

science

computational modeling

applications

AMPX

Evaluated Nuclear
Data Files (ENDF)
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Resonance Self-Shielding in SCALE:
    Accurate solutions need accurate data

 BONAMI:   Bondarenko Method
   for unresolved resonance range

 NITAWL:     Nordheim Integral Method
   for resolved resonance range (ENDF/B-V and earlier)

 CENTRM: Continuous ENergy TRansport Module
         for resolved resonance range (all libraries: ENDF/B-VI)

Performs 1-D Sn calculation for continuous-energy
neutron spectra using with Point-Wise nuclear data

Processes problem-dependent multigroup XS’s using
Point-Wise nuclear data and flux spectrum
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CENTRM Expands Traditional Resolved
Resonance Self-Shielding Capabilities
 ENDF/B-VI:  Level-level interference effects; Reich-Moore Formalism
 Spatial Effects:  Space-dependent self-shielding

 absorber lump in absorber solution
 “rim” effects in fuel pins

 Multiple Isotopes:  Accounts for resonance overlap effects
 Anisotropic scatter and leakage impacts are included
 Current-weighting: Optional use of current to weight the cross sections
 Inelastic scattering: treatment for a problem-dependent spectra

New and Improved
 Improved elastic removal for structural and moderator materials
 PW thermal spectra: includes S(a,b) scattering to treat upscatter effects
 New and improved treatment of heterogeneities

 Monte Carlo computation of Dancoff factors
 Inverse procedure to obtain Dancoff-equivalent unit cell for CENTRM

 Double heterogeneity calculation
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SCALE Double Heterogeneity Method

fuel
grains

CENTRM Dancoff-equivalent
cell calculation for pebble

homogenized
fuel

fuel pebble

CENTRM Dancoff-
equivalent cell
calculation  for

individual grains

CHOPS:
compute PW

disadvantage factors

cell-
weighted

PW library

Geometry or
User-Defined

Dancoff Factors
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SCALE Stochastic Transport Methods

 KENO-5 and KENO-VI multi-group Monte
Carlo codes
 Developed for criticality safety applications
 Much faster than continuous energy
 Now integrated with TRITON for depletion

 Continuous Energy KENO
 Currently under development
 Provides the rigor of continuous energy Monte Carlo

 MORSE/MONACO Monte Carlo Shielding
Code
 Advanced variance reduction

 A Single Consistent Geometry
 SCALE Generalized Geometry Package (SGGP)

being adopted for all ORNL codes
 Easily switch from NEWT to KENO-VI to CE-KENO
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SCALE Deterministic Transport Methods

fuel
grains

 CENTRM
 1-D, source-driven, continuous-energy
 For problem-dependent resonance processing

 XSDRNPM
 1-D, WDD, multi-group
 Forward/adjoint with a host of uses

 GEMINEWTRN
 2-D arbitrary polygonal mesh, source-driven, C-E
 For problem-dependent resonance processing

 NEWT
 2-D arbitrary polygonal mesh, multi-group
 Forward/adjoint solutions for all analyses (reactors)

 TORT
 3-D orthogonal mesh, multi-group
 For all analyses, widely-used in shielding
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ORIGEN-S: Irradiation and decay
                          simulation code

 Irradiation and decay simulation code
 Explicit simulation of 1484 unique nuclides (1946 nuclides in

database)
 129 actinides
 1119 fission products
 698 structural activation materials
 Other depletion codes typically track a minimum subset of isotopes that

are important for reactivity
 Detailed radionuclide compositions
 Decay heat sources (neutron/photon), including energy spectra
 Radio-toxicity
 One of few codes available with comprehensive isotopic

characterization of fuel over time scale of seconds to millennia
 Accident analyses
 Storage and handling
 Transportation
 Disposal or reprocessing
 Repository analysis (storage, migration, dose assessment)
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History of ORIGEN Code Development

ORIGEN-S
SCALE Module (1982)

QA configuration control
Designed with modular data

interface
Active development and support by

DOE & NRC
Modern nuclear data
Extensive validation

Comprehensive radiation sources
Graphical Windows Interface

ORIGEN2
User friendly input (1980)

Standalone code in widespread use
Very limited libraries, data hard-

wired
Obsolete nuclear data

No neutron spectra
No code and data development

Not supported at ORNL
No QA activities

ORIGEN (1973)
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239Pu Fission Sensitivity Profiles:

Sensitivity of keff to cross-section
data on an energy-dependent basis

ck=0.90

ck=0.65

TSUNAMI: Tool for S/U Analysis with
              XSDRN (1-D) and KENO-VI (3-D)

 Determination of
critical experiment
benchmark
applicability to
nuclear criticality
safety analyses

 The design of critical
general physics
experiments (GPE)

 The estimation of
computational biases
and uncertainties for
the determination of
safety subcritical
margins
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A few TSUNAMI Tools within SCALE

TSUNAMI-IP (Tools for
Sensitivity and Uncertainty Analysis
Methods Implementation – Indeces
and Parameters)

Processes output
from TSUNAMI-3D to
generate relational
parameters and
indeces for:

Estimating the
degree of
similarity between
two fissionable
material systems

JavaPENO (Java Plots,
Especially Nice Output)

Java ® interactive
two-dimensional
plotting package

Reads sensitivity
data files from
TSUNAMI-3D
output

TSUNAMI-3D (Tools
for Sensitivity and Uncertainty
Analysis Methods Implementation –
3 Dimensional)

KENO Monte Carlo
computes 3-D
system sensitivity of
keff and reactivity
responses to
neutron cross
sections for
individual:

- Nuclide(s)
- Reaction(s)
- Energy(ies)

~

/
k

effk

!
" "
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Primary physics issues & challenges
associated with the LS-VHTR
 Coolant

 Voiding
 What happens to the reactivity if we lose coolant?
 Does it matter when other changes are accounted for?

 Activation
 How does it change due to activation?
 How do transmutation products effect refueling and long term storage?

 Cost and Handling
 Thermo-physical properties
 Neutronic-activation properties during operation

 Refueling
 How do we refuel above 350 oC with possibly activated coolant?
 Where do we store 2-3 times as many blocks as the VHTR

 Core and Fuel Block Design
 Optimization varies with salt choice, and design parameters

 Enrichment, discharge burnup, number and length of cycles
 Density and temperature coefficients

 Refueling considerations
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Initial Salt Coolants for the LS-VHTR

NaF-BeF2
  (57-43) 340°C
LiF-NaF-BeF2
(31-31-38) 315°C

KF-ZrF4
   (58-42) 390°C

RbF-ZrF4
(58-42) 410°C
(52-48) 390°C

LiF-BeF2-ZrF4
  (64.5-30.5-5) 428°C

LiF-NaF-ZrF4
   (26-37-37) 436°C

LiF-NaF-RbF
    (42-6-52) 435°C

LiF-BeF2
  (67-33) 460°C

LiF-NaF-KF
    (46.5-11.5-42) 454°C

LiF-KF
( 1 )             492°C

LiF-RbF
(44-56)  470°C

LiF-ZrF4
 (51-49)                  509°C
NaF-ZrF4

  500°C

BeF2 – saltsZrF4 – saltsAlkali Fluorides
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Reactivity insertion from coolant voiding
                                             – this is not a LWR

 Rapid loss of coolant w/o temp. change unlikely
 Pool-type design @ atmospheric pressure
 High boiling point (>1400 oC): 400-700 oC above nominal
 Positive CDC (CVR) is politically sensitive

 If coolant heats up, so can graphite and fuel
 Power driven transient: DFuel > DCoolant

 If Doppler is as negative as CVR is positive… no problem
 Temperature driven transient: DCoolant > DFuel

 How much DFuel is required to offset a DCoolant?
 Safety Ratio  ~  FTC / CDC

 Reactor design effects these properties
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Estimator for Salt Coolant Physics

Parameters Value Units

Cycle Length 1.5

Cycles per Core 2

Refueling Length 20

Coolant Fraction 7

6 Li Content 0.005

Poison Content 0

Salt 235
U Coolant Total Safety Isothermal

Eutectic Enrichment Burnup Void Coolant Ratio Temperature

Ratio Temp. Coef. Coefficient

atom% wt% MW-d/kgHM Dollars Dollars per 100 o C % Dollars per 100 o C

LiF_BeF
2

(67_33) 14.8 158.3 $0.26 $0.00 0.6% -$0.48

NaF_BeF
2

(57_43) 16.1 158.3 $2.59 $0.07 23.5% -$0.22

LiF_NaF_ZrF
4

(26_37_37) 16.3 158.3 $2.72 $0.09 28.3% -$0.22

NaF_ZrF
4

(59.5_40.5) 16.6 158.3 $3.22 $0.10 43.1% -$0.14

NaF_RbF_ZrF
4

(33_23.5_43.5) 17.4 158.3 $4.25 $0.13 97.0% $0.00

Salt Coefficients of Reactivity 
Eutectic Coolant Non-Coolant

Temperature Density Total Fuel Graphite Total

atom% Dollars per 100 o C Dollars per 100 o C

LiF_BeF
2

(67_33) $0.00 $0.01 $0.00 -$0.43 -$0.05 -$0.48

NaF_BeF
2

(57_43) $0.00 $0.06 $0.07 -$0.38 $0.09 -$0.28

LiF_NaF_ZrF
4

(26_37_37) $0.00 $0.08 $0.09 -$0.38 $0.07 -$0.30

NaF_ZrF
4

(59.5_40.5) $0.00 $0.11 $0.10 -$0.36 $0.12 -$0.24

NaF_RbF_ZrF
4

(33_23.5_43.5) $0.00 $0.15 $0.13 -$0.33 $0.20 -$0.13

Weight % of 6 Li in Lithium

mg/cm3  Er
2
O

3
 in the Fuel Compact Matrix

Years

Number of Batches

Days

Volume % of Coolant in the Fuel Block
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Estimator for Salt Coolant Physics

Parameters Value Units

Cycle Length 1.5

Cycles per Core 2

Refueling Length 20

Coolant Fraction 7

6 Li Content 0.005

Poison Content 5

Salt 235
U Coolant Total Safety Isothermal

Eutectic Enrichment Burnup Void Coolant Ratio Temperature

Ratio Temp. Coef. Coefficient

atom% wt% MW-d/kgHM Dollars Dollars per 100 o C % Dollars per 100 o C

LiF_BeF
2

(67_33) 15.1 158.3 -$0.13 -$0.09 -3.7% -$2.43

NaF_BeF
2

(57_43) 16.4 158.3 $2.32 -$0.01 -0.6% -$2.16

LiF_NaF_ZrF
4

(26_37_37) 16.5 158.3 $2.78 $0.04 2.0% -$2.13

NaF_ZrF
4

(59.5_40.5) 16.9 158.3 $3.30 $0.06 3.0% -$2.04

NaF_RbF_ZrF
4

(33_23.5_43.5) 17.7 158.3 $4.78 $0.11 5.3% -$1.89

Salt Coefficients of Reactivity 
Eutectic Coolant Non-Coolant

Temperature Density Total Fuel Graphite Total

atom% Dollars per 100 o C Dollars per 100 o C

LiF_BeF
2

(67_33) -$0.09 $0.00 -$0.09 -$0.89 -$1.47 -$2.35

NaF_BeF
2

(57_43) -$0.07 $0.06 -$0.01 -$0.83 -$1.32 -$2.15

LiF_NaF_ZrF
4

(26_37_37) -$0.05 $0.09 $0.04 -$0.84 -$1.34 -$2.17

NaF_ZrF
4

(59.5_40.5) -$0.04 $0.11 $0.06 -$0.82 -$1.29 -$2.10

NaF_RbF_ZrF
4

(33_23.5_43.5) -$0.04 $0.15 $0.11 -$0.79 -$1.21 -$1.99

Weight % of 6 Li in Lithium

mg/cm3  Er
2
O

3
 in the Fuel Compact Matrix

Years

Number of Batches

Days

Volume % of Coolant in the Fuel Block
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Estimator for Salt Coolant Physics

Parameters Value Units

Cycle Length 1.5

Cycles per Core 2

Refueling Length 20

Coolant Fraction 15

6 Li Content 0.005

Poison Content 5

Salt 235
U Coolant Total Safety Isothermal

Eutectic Enrichment Burnup Void Coolant Ratio Temperature

Ratio Temp. Coef. Coefficient

atom% wt% MW-d/kgHM Dollars Dollars per 100 o C % Dollars per 100 o C

LiF_BeF
2

(67_33) 16.2 158.3 -$0.67 -$0.19 -9.1% -$2.30

NaF_BeF
2

(57_43) 18.7 158.3 $4.51 -$0.04 -2.3% -$1.70

LiF_NaF_ZrF
4

(26_37_37) 19.4 158.3 $5.72 $0.08 4.4% -$1.68

NaF_ZrF
4

(59.5_40.5) 20.0 158.3 $6.84 $0.12 7.6% -$1.46

NaF_RbF_ZrF
4

(33_23.5_43.5) 22.0 158.3 $10.27 $0.21 16.1% -$1.10

Salt Coefficients of Reactivity 
Eutectic Coolant Non-Coolant

Temperature Density Total Fuel Graphite Total

atom% Dollars per 100 o C Dollars per 100 o C

LiF_BeF
2

(67_33) -$0.19 -$0.01 -$0.19 -$0.88 -$1.23 -$2.10

NaF_BeF
2

(57_43) -$0.15 $0.06 -$0.04 -$0.76 -$0.91 -$1.66

LiF_NaF_ZrF
4

(26_37_37) -$0.10 $0.17 $0.08 -$0.78 -$0.98 -$1.76

NaF_ZrF
4

(59.5_40.5) -$0.10 $0.11 $0.12 -$0.73 -$0.85 -$1.58

NaF_RbF_ZrF
4

(33_23.5_43.5) -$0.10 $0.15 $0.21 -$0.66 -$0.66 -$1.31

Weight % of 6 Li in Lithium

mg/cm3  Er
2
O

3
 in the Fuel Compact Matrix

Years

Number of Batches

Days

Volume % of Coolant in the Fuel Block
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Activation &
Transmutation

Effect
Refueling and
Storage
Options

1.E-09

1.E-06

1.E-03

1.E+00

1.E+03

Lithium Beryllium Fluorine Sodium Potassium Rubidium Zirconium

Components of Salt Options
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One Minute

One Day

Ten Days

Activity after Ten Years of Decay

All Radiation (Ci/g_coolant)
Isotope Radiation (keV) Effective T1/2 Lithium Beryllium Fluorine Sodium Potassium Rubidium Zirconium

Be-10 Electron 1.5 Million Years 2.E-07

Na-22 Positron 3 Years 2.E-09

Cl-36 Electron 300 Thousand Years 1.E-06

K-40 Gamma (1.5) 1 Billion Years 4.E-08

Rb-87 Electron 50 Billion Years 2.E-08

Zr-93 Gamma (0.03) 1.5 Million Years 4.E-07

Nb-93m Gamma (0.03) 1.5 Million Years 3.E-07

Ten Years   (All Radiation) 0.E+00 2.E-07 0.E+00 2.E-09 1.E-06 2.E-08 7.E-07
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Cost and Handling Challenges of Salts

 High freezing points (~350-500 oC)
 Challenge refueling and maintenance outages

 High vapor pressure
 For some salts

 Beryllium toxicity
 If a BeF2 salt is used

 High cost of lithium enrichment
 If a LiF salt is used

 Limited experience
 With some salts, like those with RbF

 Enrichment penalty due to parasitic capture
 6Li, K, Zr
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Axial-layering of Er2O3 poison can
significantly reduce the CVR

Reflector

Fuel

Fuel

Fuel

Fuel

Fuel

Fuel

Fuel

Fuel

Fuel

Fuel

Fuel

Reflector

$0.54

1.265

1.259

ReflectorReflectorReflector13

PoisonPoisonPoison12

FuelPoisonPoison11

FuelFuelFuel10

PoisonFuelFuel9

PoisonPoisonPoison8

FuelFuelPoison7

PoisonPoisonPoison6

PoisonFuelFuel5

FuelFuelFuel4

FuelPoisonPoison3

PoisonPoisonPoison2

ReflectorReflectorReflector1

-$0.88-$0.83-$0.94CVR ($)

1.2411.2411.240Voided Eigenvalue

1.2501.2501.250Cooled Eigenvalue
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Refueling is the major issue today

 The challenge:
 Very hot: > 350 oC
 Many more fuel blocks than the VHTR

 600 MWt VHTR = 1020 blocks
 2400 MWt LS-VHTR = 2650 blocks

 Coolant may have a high dose rate

 Solutions:
 Pebble Bed – very high coolant fraction
 Robotics – already expected with VHTR
 Larger blocks – possibly feasible?
 Assemblies – industry approves

 Are assembly designs feasible?
 Full-length graphite-clad rods, clustered

 together like an LWR fuel assembly
 Passive safety is not a problem

 Natural circulation of salt
 Not just graphite conduction

 More reuse of nuclear-grade
graphite

 Enrichment/poison grading is required
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The assembly design: similar to the
ACR-700, with less uncertainty

$5.11$1.02$0.88$0.90Δε
$5.71$1.08$1.21$1.40Δf

-$10.30-$1.38-$1.19-$2.05Δp

$0.01$0.01$0.01σ

-$0.26$0.03$0.74$0.08CVR
-$0.78-$0.69-$0.16-$0.17Δη

1.2571.2601.2681.242kcool

ACR-700

Assembly
with

Enrichment
Grading

Assembly
without

Enrichment
Grading

Base  Block

This can now be done directly using a TSUNAMI sequence.
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Conclusions

 SCALE:
 Many qualified, easy to use tools for nuclear analysis
 Rigorous and independent models ideal for benchmarking
 Has been used for a wide variety of systems:

 Reactor analysis, experiment design, shielding, crit. safety, etc.
 Many tools are directly applicable to Gen-IV systems and the

Advanced Fuel Cycle Initiative
 LS-VHTR:

 Salt-coolant alternative for the VHTR
 Coolant voiding:

 Previously primary issue
 Has been shown to be of little significance for many salts

 Refueling:
 Very high temperature with many fuel blocks
 Very challenging:  currently the primary issue
 Several options have been/are being considered
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How can ORNL help Gen-IV and AFCI?

 Multi-group cross sections:
 Accurate, problem-dependent MG cross sections
 3-D depletion of doubly-heterogeneous systems

 Isotopic analysis:
 Benchmarking current tools (ORIGEN2) w/ SCALE (ORIGEN-S)
 ORIGEN-S replacement for ORIGEN2 applications

 System/experiment analyses:
 Benchmarking current system analyses with SCALE
 S/U analysis of isotopics and reactivity parameters for a system
 Applicability assessment of experiments to reactor systems
 Bias and uncertainty analysis of experiments

 Anything else?


